Join us
in September

Join us in September

School of Engineering, Computing and Mathematics

BEng (Hons) Marine Technology

Places still available Register for Clearing

UCAS tariff 112 - 128
UCAS course code J610
Institution code P60
Duration

3 years

(+ optional placement)
Course type

Full-time

Study location Plymouth

Captivated by the technical side of the marine environment? Marine technologists are engineers focused on engineering for life at sea. As problem solvers, engineers design, create and use tools in every industry from nanotech to agritech. Develop skills in the fundamentals of engineering, marine engineering and naval architecture; benefit from laboratory sessions, taught by enthusiastic staff with strong industry links; and start your journey to becoming a qualified professional marine engineer.

Apply to the Tamar Engineering Project

Open for applications to ambitious students who want to embark on a career in engineering and who have shown potential for high academic achievement at A level, but whose background or personal circumstances may be a barrier to university study. Successful applicants will receive:
  • £3,000 per annum towards living costs for the duration of the taught element of their degree (usually three years)
  • £1,500 fee waiver per annum
  • one-to-one mentoring from an industry expert.

Applications close 30 June 2024

Specialise further:

Our BEng and MEng Mechanical Engineering and Marine Technology course can all be taken with composites engineering as a specialist pathway. For more advice on which course is right for you, see our 'Which course?' advice.

Opportunities available...

  • A scholarship scheme is available: for more information, see the 'Fees, costs and funding' section, below.

Key features

  • Optional 'with composites' pathway available
    In year 4, you have the option to choose a specialist 'with composites' pathway, which allows you to study the design and manufacture of specialist materials. Should you wish to choose this route, ‘with composites’ will appear as a named specialism on your degree certificate to acknowledge your specialism in this area.
  • Make use of cutting-edge facilities
    Students in engineering, science and the arts have access to a range of specialist equipment and innovative laboratories in our new engineering and design facility.
  • Join the upper ranks
    In the Academic Ranking of World Universities (ARWU), also known as the Shanghai Ranking, we are eighth out of 50, and the highest ranked UK university for Marine/Ocean Engineering.
  • Open the door to a successful future
    With starting salaries from £23,000, our graduates have gone on to work for , , , , , the and the .
  • Define yourself with an IMechE accredited degree
    The course has been designed to fully satisfy the educational base for an Incorporated Engineer (IEng) and partially satisfy the educational base for a Chartered Engineer (CEng).
  • Be flexible
    Our combined first year allows you to switch to mechanical engineering or civil engineering in line with your career ambitions.
  • Be unique
    Our courses are the only ones in the country to have a named with composites pathway; choosing this will allow you to stand out in the job market.
  • Learn hands-on
    We offer the latest industry-standard software, laboratory sessions and practical classes.
  • Aim higher
    You may progress onto the MEng course at the end of your second year if you are doing well.
  • Put learning into practice
    Take a paid year in industry – many of our students receive job offers or sponsorship as a result of their placements.
  • Go on to thrive
    Your degree opens doors to sectors as diverse as vessel design, naval architecture, ship safety, propeller design and manufacturing or engine energy efficiency.

Course details

  • Year 1

  • In the first year of your marine technology course, you will study alongside other engineering students to learn about the fundamental principles underpinning the subjects studied throughout the course. You will develop your mathematical skills and study engineering materials, structural mechanics and fluid mechanics. You will learn about generic design processes and computer-aided design, and work in a team to undertake a real-world design challenge. Laboratory sessions will form an important part of your learning.
    Core modules
    BPIE115 Stage 1 Mechanical Placement Preparation
    This module is aimed at students who may be undertaking an industrial placement in the third year of their programme. It is designed to assist students in their search for a placement and in their preparation for the placement itself.
    ENGR101 Engineering Design
    This module introduces students to engineering design practice appropriate to civil, marine and mechanical engineering disciplines. Students will develop sketching and technical drawing skills and use computer-aided design (CAD) tools to create digital models of technical systems. Working in a team, students will be tasked to create sustainable solutions to real-world technical design challenges.
    ENGR102 Engineering Practice and Experimental Techniques
    The mainly experimental basis of this module allows students to extend their engineering knowledge and practical competence using a guided, student-centred, and laboratory-based approach to develop fundamental understanding of a range of engineering topics. The module will help students acquire good study skills and competency in technical communication.
    ENGR103 Engineering Science
    This module introduces students to the fundamental scientific principles of fluid mechanics appropriate for civil, marine and mechanical engineering applications; the fundamental concepts of thermodynamics relating to the interaction between systems and their surroundings, including both flow and non-flow processes, heat engines, and mechanisms of heat transfer; and the fundamental principles of electrical engineering.
    ENGR104 Engineering Mathematics
    This module provides students with a number of fundamental mathematical skills, and techniques, which are essential for the analysis of engineering problems.
    ENGR105 Mechanics and Structures
    This module introduces students to the fundamental scientific principles of engineering mechanics and structures appropriate for civil, marine and mechanical engineering applications. Deeper understanding of these scientific principles will be developed through practical applications using hand calculations and computer software tools as appropriate.
    ENGR106 Engineering Materials
    This module introduces students to a broad range of engineering materials appropriate for civil, marine and mechanical engineering applications. The module will consider the relationship between structure, manufacture and properties, presenting practical applications wherever appropriate. Students will also be introduced to standard material test methods.
  • Year 2

  • The second year introduces you to naval architecture and control systems engineering while further developing your thermodynamics, fluid mechanics, mathematics and design skills. These subjects are explored in lectures, in laboratory sessions and workshops. At this point, it you can opt in to the 'with composites' pathway.The placements module will develop your professional and transferable skills for the workplace and support you in finding an appropriate placement.
    Core modules
    MATS235 Materials & Structural Integrity
    This module introduces students to the structural assessment of a range of engineering materials. It includes both a study of the materials themselves as well as their likely failure mechanisms under load. The module will also develop the underpinning mathematical analysis required to quantify these effects in an appropriate manner.
    MECH233 Manufacturing Processes
    This module provides students with a comprehensive introduction to manufacturing. It will cover both the fundamentals of forming, shaping, joining and traditional machining processes in relation to a range of engineering materials and the relationship between structure, manufacture and properties. It will also include hands-on workshop activities to reinforce understanding and to develop additional engineering competences
    CONT222 Engineering Mathematics & Control
    This module provides engineering mathematical techniques and methods (Laplace transform and linear algebra) for the analysis of practical engineering problems and introduces classical control systems theory.
    MARN221 Marine Engineering Design & Commercialisation
    In this module, students develop and apply their engineering science knowledge in a practical marine design context. They learn to follow a structured design process to enhance creativity, logical analysis/decision making and commercial awareness. They apply this process to solve a marine design challenge. They also learn to use parametric calculations to optimise components/systems for specific design constraints.
    MARN220 Naval Architecture 1
    This module examines the principles of floating and the stability of marine vessels in their environment and deals with the prediction of the resistance of vessels in motion and the selection and design of suitable propellers.
    MECH234 Thermo-Fluids
    This module will introduce student’s key concepts in thermodynamics and fluids mechanics theory (1st and 2nd laws) pertaining to mechanical engineering. It will also include an introduction to heat transfer and its application in design and performance of heat engines and other applications.
    BPIE215 Stage 2 Mechanical Placement Preparation
  • Optional placement year

  • By taking the opportunity to spend an optional year in paid employment whilst still a student engineer, you will obtain recordable professional experience, build a network of industry contacts and often obtain offers of summer work, sponsorship or employment on graduation. Our placements team will support you in finding a placement, and we have an extensive network of employers across all sectors.
    Optional modules
    BPIE335 Engineering Related Placement
  • Final year

  • In your final year, you will deepen your understanding of naval architecture and marine engineering. You will also focus your specialism choosing to further your understanding of computer aided engineering tools and systems design or choosing to study the theoretical and practical aspects of composites engineering on the 'with composites' pathway. Your dissertation project enables you to research the topics that interest you and will allow you to bring together all you have learnt so far.
    Pure marine technology pathway
    Core modules
    PRME307 MT Honours Project
    In this module you will carry out Independent project work closely aligned to their programme of study. This will be carried out under the guidance of an appointed supervisor.
    MARN342 Naval Architecture 2
    This module places engineering principles in the context of a hull and its features. The hull and the structural design concepts which are particularly applicable to marine crafts are developed, applied and analysed. Various types of marine vessels’ fitness for purpose are studied for the design drivers used and the operational aspects considered.
    MARN341 Marine Engineering
    The module covers Marine Engineering including marine power plant, transmission, system efficiency and environmental factors, and Marine Systems Engineering exploring the aspects of marine engineering dynamic systems, design and analysis.
    MECH341 Computer Aided Engineering (FEA/CFD)
    In this module, students learn to use two of the Computer Aided Engineering methods that are most commonly used in industry; finite volume Computational Fluid Dynamics (to solve fluid flow problems) and Finite Element Analysis (to solve structural problems). Students gain an overview of the theory that underpins these methods, and learn how to use a validation process to assess reliability of simulation results.
    CONT317 Control and Intelligent Systems Design
    This module explores the application of control engineering and artificial intelligence techniques in the design of engineering control systems.
    Marine technology with composites pathway
    Core modules
    PRME307 MTC Honours Project
    In this module students will carry out Independent project work closely aligned to their programme of study. This will be carried out under the guidance of an appointed supervisor.
    MARN342 Naval Architecture 2
    This module places engineering principles in the context of a hull and its features. The hull and the structural design concepts which are particularly applicable to marine crafts are developed, applied and analysed. Various types of marine vessels’ fitness for purpose are studied for the design drivers used and the operational aspects considered.
    MARN341 Marine Engineering
    The module covers Marine Engineering including marine power plant, transmission, system efficiency and environmental factors, and Marine Systems Engineering exploring the aspects of marine engineering dynamic systems, design and analysis.
    MATS347 Composites Design and Manufacture
    The module provides an integrated approach to design, materials and processing selection for engineering composite materials.
    MATS348 Composites Engineering
    This module introduces stress analysis and appropriate numerical methods in the context of composite materials and integrates the learning in a practical assignment to produce a prototype composite component.

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

The following programme specification represents the latest course structure and may be subject to change:

BEng Marine Technology Programme Specification September 2024 1836

The modules shown for this course are those currently being studied by our students, or are proposed new modules. Please note that programme structures and individual modules are subject to amendment from time to time as part of the University’s curriculum enrichment programme and in line with changes in the University’s policies and requirements.

Entry requirements

UCAS tariff

112 - 128

A level: Typical offer will be 112 points including Grade C at Maths (or Mathematics MEI) and Grade C at second relevant subject: Applied ICT, Applied Science, Applied Business, Biology, Business/Business Studies, Chemistry, Computing, Computer Science, DT (Product Design Resistant Materials), DT (systems and Control Tech), DT Product Design (Textiles Tech), Economics, Economics and Business, Electronics, Engineering, Environmental Science, Design and Technology, ICT, Physics, Science, Statistics, Further Maths, Use of Maths, Pure Maths. Excluding General Studies.
BTEC National Diploma/QCF Extended Diploma: DDD in a relevant engineering subject.
BTEC National Diploma modules
If you hold a BTEC qualification it is vital that you provide our Admissions team with details of the exact modules you have studied as part of the BTEC. Without this information we may be unable to process your application quickly and you could experience significant delays in the progress of your application to study with us. Please explicitly state the full list of modules within your qualification at the time of application.
International Baccalaureate: 26-30 overall to include 5 at higher level mathematics and 5 at higher level relevant subject.
Access to HE Diploma in a Science or Engineering: Pass Access in engineering to include 45 credits at level 3. Must include 33 credits to include at least 12 credits at level 3 in mathematics with distinction and 12 credits at level 3 in a second relevant subject with merit. Must have GCSE English and mathematics grade C / 4 or above or equivalent.
GCSE: Mathematics and English at grade C or above is required.
For other qualifications, please enquire.
We welcome applicants with international qualifications. To view other accepted qualifications please refer to our tariff glossary.
Please note: We understand that many applicants remain anxious about meeting the exact terms of our standard conditional offers. We will look again at your application and revise our offer for those applicants who we continue to believe are a good match to our courses, once we have the certainty of your actual results in August.

Fees, costs and funding

Student 2023-2024 2024-2025
Home £9,250 £9,250
International £16,300 £18,100
Part time (Home) £770 £770
Full time fees shown are per annum. Part time fees shown are per 10 credits. Please note that fees are reviewed on an annual basis. Fees and the conditions that apply to them shown in the prospectus are correct at the time of going to print. Fees shown on the web are the most up to date but are still subject to change in exceptional circumstances. More information about fees and funding.

Undergraduate scholarships for international students

To reward outstanding achievement the University of Plymouth offers scholarship schemes to help towards funding your studies.

Additional costs

This course is delivered by the Faculty of Science and Engineering and more details of any additional costs associated with the faculty's courses are listed on the following page: Additional fieldwork and equipment costs.

Tuition fees for optional placement years

The fee for all undergraduate students completing any part of their placement year in the UK in 2023/2024 is £1,850.
The fee for all undergraduate students completing their whole placement year outside the UK in 2023/2024 is £1,385.
Learn more about placement year tuition fees

How to apply

All applications for undergraduate courses are made through UCAS (Universities and Colleges Admissions Service).
UCAS will ask for the information contained in the box at the top of this course page including the UCAS course code and the institution code.
To apply for this course and for more information about submitting an application including application deadline dates, please visit the .
Support is also available to overseas students applying to the University from our International Office via our how to apply webpage or email admissions@plymouth.ac.uk.

Progression routes

International progression routes

The offers foundation, first-year and pre-masters programmes that lead to University of Plymouth degrees. Courses are specially designed for EU and international students who are missing the grades for direct entry to the University, and include full duration visa sponsorship. You can start in January, May or September, benefitting from small class sizes, top-quality tuition and 24/7 student support.
Find out more at plymouth.ac.uk/upic or contact our team at info@upic.plymouth.ac.uk

Babbage Building: where engineering meets design

"The building provides a state-of-the-art setting to inspire the engineers and designers of tomorrow, making it the ultimate place to bring together students, academics and industry in an environment that not only benefits them but also society as a whole." – Professor Deborah Greaves OBE
Situated on the western edge of our city centre campus, the landmark new facility is home to the School of Engineering, Computing and Mathematics and offers additional space for the School of Art, Design and Architecture.
New Engineering and Design Facility

Optional work placement year

Get your career off to a great start by spending a year working professionally as a student engineer between years two and three. You could earn £15,000 a year or more, and possibly gain sponsorship through your final year(s) at university.
Gain experience that will help you find a job when you graduate and a Certificate of Professional or Work Experience in addition to your degree award.
Placements

Final year project

Our final year student project open day showcases the excellence of engineering skills development and the high levels of achievement of our undergraduates.
Browse poster examples, and view previous project open day photographs below.
final year student project open day showcase

Careers

Whether you want to work in vessel design and construction, gas turbine manufacture or propeller design, we’ll support you throughout your degree to make sure you’re prepared and ready for your career in the marine industry.
90 per cent of our graduates are in work or further study within six months of finishing their degree.**
Marine technology students
athena swan bronze

Athena Swan Bronze

The School of Engineering, Computing and Mathematics was awarded an Athena Swan Bronze award in October 2020 which demonstrates our ongoing commitment to advancing gender equality and success for all.

People

Meet our school technical staff

Our technical staff are integral to the delivery of all our programmes and bring a diverse range of expertise and skills to support students in laboratories and workshops.

Welcome to mechanical engineering at Plymouth

Find out what it is like to study with us and see some of our facilities.
Watch our video to find out more about studying mechanical engineering at the University of Plymouth.
*These are the latest results from the National Student Survey. Please note that the data published on is updated annually in September.