School of Geography, Earth and Environmental Sciences

MGeol (Hons) Geology

The Earth sciences are critical to shaping the future of our planet. Geologists use their knowledge of the earthÔÇÖs evolution and the physical, chemical and biological process that shape our planet, to pioneer sustainable futures. Our four-year degree will develop your knowledge and skills through advanced fieldwork, research training and opportunities to establish links with industry professionals, priming you for success in a range of geological careers in academia, government or industry.

Innovative Earth Science courses

Our Earth Science courses are designed around a core which provides students with the skills and expertise that are critical to tackle todayÔÇÖs challenges of global environmental change. Ranging from locating and extracting the raw materials needed for a green energy transition to understanding climate history through time, the Earth Sciences play an active role and provide crucial perspectives on our planet's future.╠ř

Careers with this subject

Our Earth science students have tremendous opportunities to gain the knowledge and skills necessary for employment in a variety of work settings. Our hands-on approach to teaching and learning throughout the course will provide you with the topical skills and experience that you can apply to the wide range of career options as graduates.
What can you do with an Earth science degree?╠ř

Key features

  • Four year integrated masters programme.
  • Sharpen your research skills working alongside staff on a research or industry-related project, with the potential to be published in a peer-reviewed journal.
  • 100 per cent of the final year is taught at masters-level.
  • Our approachable staff share their cutting-edge research and expertise through varied teaching practices in lectures, tutorials, practical classes and field courses.
  • Learn to apply the latest techniques in the field and laboratory. Our substantial fieldwork programme uses the unrivalled local range of geological and geographical locations. Residential overseas fieldwork visits regions of active tectonics such as Death Valley, Italy and Sicily.
  • All students have the opportunity to spend your second year studying abroad in Europe, Canada, Australia, USA or elsewhere through our bilateral and ISEP exchange programmes.
  • ╠řStudents can undertake a placement year, between the second and final year, working full time for a geological employer.
  • Improve your skills in our open access laboratory, LABplus.
  • Develop your confidence with your personal tutor, providing you with regular guidance throughout your degree.╠ř
  • Get support from students in the year ahead via our PALS mentoring scheme.
  • Live and study close to the sea, Dartmoor and two geological UNESCO World Heritage sites.
  • Receive free essential field safety equipment as part of your welcome package.
  • Work towards becoming a Chartered Geologist, our accreditation by the , the worldÔÇÖs oldest and most prestigious national learned society for geology, helps you to gain the required experience.
  • A diverse and respectful place in which to work and study is fundamental to everything we do. Find out more about equality, diversity and inclusion in the School of Geography, Earth and Environmental Science.

Course details

  • Year 1

  • Laying the foundations of geological knowledge, your first year provides you with an introduction to laboratory and field skills. You'll learn about key Earth processes including plate tectonics, and take a practical approach to the study of minerals, rocks, fossils and geological structures. Our tutorials will help you develop effective study techniques and computing skills and you'll undertake fieldwork, including residential classes, across the South West.
    Graphical overview of our course structure.╠ř

    Core modules

    • Earth Materials and Resources (GEOL1009)

      An introduction╠řto Earth materials (minerals, rocks╠řand resources)╠řand geological structures,╠řfocussing on their formation, composition and properties from a theoretical and practical perspective, supported by case study(ies). The environmental and ethical issues associated with resource exploitation╠řwill be introduced. Students will be introduced to safe╠řand professional╠řfield practice.╠ř

    • Climate Tectonics and Hazards (GEOL1010)

      This module╠řprovides an introduction to╠řEarth Surface processes and their interactions with plate tectonics, at present╠řand╠řin the geological past.╠řParticipants learn╠řhow an understanding╠řof╠řEarth surface processes and environments╠řcan be╠řused in determining the cause and╠řnature╠řof past and future climate and oceanographic change,╠řand in the understanding, prediction and mitigation of╠řa range of╠řgeological hazards.╠ř

    • The Life and Death of an Ocean (GEOL1011)

      ╠řThis module will explore the concept of the Wilson Cycle whereby major oceans periodically open and close, causing reconfiguration of the size, shape and position of the continents through geological time.╠řStudents will develop an in-depth╠řunderstanding╠řof the interactions between plate tectonics and earth surface systems╠řand palaeontological evidence for past environments and environmental change.╠ř╠ř╠ř

    • Sustainable Geoscience (GEOL1008)

      An╠řintroduction to╠řsustainable geoscience and the role of geoscientists in the solution of global challenges and UN sustainable development goals.╠ř╠řIntroduction╠řto╠řgood,╠řprofessional╠řand ethical╠řscientific practice.╠řThe module also introduces the Earth as a system of interlinked╠řspheres╠ř(geosphere, hydrosphere, biosphere, atmosphere), and the unifying paradigms╠řassociated with╠řgeological time╠řand plate tectonics.╠ř

  • Year 2

  • Year 2 consolidates the knowledge and skills developed in Year 1, with an emphasis on the practical side of geology. You'll develop observational, analytical and interpretive skills and the ability to use these skills to answer fundamental geological questions. You'll also learn to make geological maps and develop new field skills which will be used in fieldwork you undertake in both the UK and in Spain. YouÔÇÖll also have the opportunity to spend your second year studying abroad in Canada, Australia, USA or Europe.
    Core modules
    GEOL2014 The Earth Surface and Critical Zone
    GEOL2016 Ocean Geoscience
    GEOL2015 The Earth's Interior and Resources
    GEOL2017 The Building of Britain

    Core modules

    • The Earth Surface and Critical Zone (GEOL2014)

      This module provides a practical and theoretical understanding to the analysis of the Earth surface and near surface (the Critical Zone),╠řintegrating╠řa range of╠řdata and╠řanalytical methods╠řto explore present and ancient╠řenvironments.╠ř

    • The Earth's Interior and Resources (GEOL2015)

      This module provides a theoretical and practical understanding of the analysis of the EarthÔÇÖs╠řsubsurface.╠řStudents learn how to analyse and interpret subsurface data (including geophysical techniques)╠řand geological materials formed in the subsurface, applications of these techniques and knowledge in resource exploration and production,╠řand╠řthe impacts of subsurface investigations.╠ř

    • Ocean Geoscience (GEOL2016)

      This module develops an in-depth understanding on╠řmodern╠řocean basins╠řand the role the oceans play in EarthÔÇÖs evolution. Students will build up knowledge on╠řmid-ocean ridge processes,╠řsedimentary╠řenvironments,╠ř╠řpalaeoceanography╠řand╠řpalaeoclimates╠ř(and╠řhow these inform models for future╠řenvironmental╠řchange, with an awareness of the limitations of such models),╠řocean╠řhazards and╠řresources.╠ř

    • The Building of Britain (GEOL2017)

      This provides an understanding of key periods in the geological evolution of╠řthe╠řBritish Isles╠řwithin a plate tectonic and╠řpalaeoenvironmental╠řcontext. Students gain a practical understanding of the relationships between tectonic and╠řpalaeo-climatic/oceanographic events in the stratigraphic, structural, magmatic, metamorphic and╠řfossil╠řrecord of Britain and╠řenvirons, and╠řtheir╠řrelationship to╠řresource/hazard╠řdistribution.╠ř

    • Placement Preparation (GEES2000)

      This module explores the role of placements, work experience and volunteering for enhancing employability whilst at university and as a future graduate. It considers placement options (types, durations) and supports students in developing applications and preparing for interviews.

  • Optional placement year

  • Take advantage of our optional placement year, giving you the opportunity to develop your geological skills in the workplace and gain valuable experience. Find your perfect placement with the help of our employability service and benefit from specialist workshops and tutorials in your second year, helping you prepare for your year in industry.╠ř

    Core modules

    • Placement (GEES3000)

      This module is a placement position, where a student undertakes a programme of work within a host company or organisation. The placement occurs within a yearlong period, meeting minimum duration requirements. Students experience applying their degree, experience professional practice, develop enhanced subject-related knowledge and skills, and undergo personal-professional development.

  • Year 3

  • In your third year, you will develop specialised geological knowledge and skills through an exciting choice of sustainability-focused option modules, including advanced fieldwork. New option modules from September 2021 include geohazards and risk, energy transition geoscience, and paleoenvironmental analysis. Students can also take engineering geology, advanced tectonics, igneous and volcanic processes, Geological Information Systems (GIS) and remote sensing. Those students taking advanced fieldwork will develop additional professional field-skills in locations such as Sicilian volcanoes, Italy, or the Death Valley, USA.
    Core modules
    GEOL3016 Geoscience Research Project
    GEOL3017 The professional Geoscientist
    Optional modules
    GEOL3013 Environmental Change in Earth History
    GEOL3014 Geohazard and Risk
    GEOL3015 Energy Transition Geoscience
    GEOL3018 Evolution of Tectonic and Magmatic Systems
    GEOL3010 Engineering Geology
    GEOL3019 Neotectonics, hazards and Resources

    Core modules

    • Geoscience Research Project (GEOL3016)

      This module involves the planning, data collection, data analysis and manipulation, interpretation and presentation of a substantive piece of original geological research, based around primary data collection by the student. The project may involve field, laboratory, desk-based╠řor combination study.╠ř

    • Professional Field and Core Analysis (GEOL3020)

      Students undertake two applied geological projects, gathering, integrating, analysing, and interpreting structural and stratigraphic data for an applied geological mapping project and an analysis of rock core material, integrating analysis of a range of associated samples and data. Students are trained in a professional methodology to safe and ethical practice and presentation of the work to a range of audiences.

    • Frontiers in Geoscience (GEOL3021)

      Students explore a range of leading topics in geosciences, including those related to the challenges facing modern society where geoscientists are needed to meet these challenges. Students draw-upon state-of-the-art research to develop their understanding and will critically evaluate this research to develop their own evidence-based opinions on these topics and will present their findings in a professional manner.

    Optional modules

    • Environmental and Resource Geoscience (GEOL3022)

      This module investigates the interactions between humans and the subsurface, from the impact of industrial legacies on land quality and water resources, to the role that the subsurface plays in renewable energy storage. Students learn to use industry standard software and workflows to evaluate subsurface sites for energy resources, safe subsurface storage of resources, carbon dioxide or hazardous waste.╠ř

    • Tectonics and Geohazards (GEOL3023)

      This module involves the study of one of the WorldÔÇÖs most tectonically active settings to gain an in-depth understanding of how active tectonics, climate and environmental change interact and have evolved to control the nature and distribution of geological and geomorphological features, natural hazards and resources. The impacts/mitigation of hazards and resource exploitation are evaluated, usually around field data.╠ř

    • Environmental Change Through Earth History (GEOL3024)

      This module will demonstrate how the study of past environmental change can be used to help us better understand the impacts of future anthropogenic induced environmental change. Using a range of cutting edge geochemical, palynological, and modelling techniques, students will evaluate past environmental changes events as proxies for the future.

  • Final year

  • The overall emphasis in your final year is to deepen and refine your field, research and professional skills. You'll build on your existing field skills by exposure to advanced field techniques and take part in modules aimed to develop research, analytical and science communication skills. Finally, you will carry out an advanced masters-level independent research project, developed by academic staff and with the potential to lead to publication in academic journals. 100 per cent of this year will be undertaken at master's level.

    Core modules

    • MGeol Project (GEOL5004)

      Advanced, independent research project, normally involving geological field and/or laboratory work. Autonomy will be expected with respect to the design and operation of the project. Professionally presented results will entail rigorous analysis, critical awareness, and current contextual significance.

    Optional modules

    • Analysis of Chemicals of Environmental Concern (GEES526)

      Students will undertake a series of advanced analytical techniques in order to characterise and quantify a range of environmental pollutants commonly encountered in environmental investigations. Students are presented with case study examples based upon typical investigations undertaken in environmental consultancy.

    • Soil and Rock Mechanics, Characterisation and Field Skills (GEES528)

      This module covers the principles of soil and rock mechanics. How soil and rock behave under loading and what are the main parameters to characterize those behaviours. Laboratory testing is used to give an insight on the basic principle of soil and rock strength and how these are determined. Ground investigation techniques used to assess soil and rock characteristics are also described and demonstrated in the field.

    • Environmental Observations and Quality Assurance (GEES531)

      This module introduces the fundamental concepts of ÔÇśthe analytical approachÔÇÖ to working with environmental problems, including student-lead case studies that allowing them to learn and apply the principles of good practice for observational data collection, quality control and traceability. Research study skills sessions are included, leading to the planning of a research dissertation.

    • Geohazards and the Built Environment (GEES532)

      This module will introduce geohazards and their impacts, exploring how to assess, monitor and mitigate them. Students undertake an assessment of a natural geohazard and produce a professional report on that assessment with a proposal for remediation. They will also learn about anthropogenic hazards and develop skills in public communication of these issues, via a practice based assessment.

    • Marine Science (MAR514)

      This module provides an introductory overview of basic oceanography including physical, chemical, geological and biological aspects of the subject. There is particular emphasis on methods of quantifying and predicting coastal conditions, as well as interplay between physical, chemical and biological aspects of ocean science.

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

The following programme specification represents the latest course structure and may be subject to change:

MGeol Geology Programme Specification September 2024 5368

The modules shown for this course are those currently being studied by our students, or are proposed new modules. Please note that programme structures and individual modules are subject to amendment from time to time as part of the UniversityÔÇÖs curriculum enrichment programme and in line with changes in the UniversityÔÇÖs policies and requirements.

Entry requirements

UCAS tariff

120 - 128

IB
28-30 overall to include a science related subject.
A level
120 points including a minimum of 2 A Levels in a science subject (see subject list below) or 128 points including 1 A Level in a science subject (see subject list below).
We accept the following A Level subjects: Biology/Human Biology, Maths/Use of Maths/Further Maths, Statistics, Physics, Electronics, Chemistry, Environmental Science/Studies, Applied Science, Geography, Geology, Design and Technology, Psychology, Computer Science/Computer Programming, Information Technology/Information and Communication Technology.
T Level
Science pathway considered please enquire directly with the University.
BTEC QCF Extended Diploma/RQF National Extended Diploma
DDM ÔÇô science related subject. You are encouraged to contact admissions@plymouth.ac.ukif you do not meet this criteria.
BTEC National Diploma modules
If you hold a BTEC qualification it is vital that you provide our Admissions team with details of the exact modules you have studied as part of the BTEC. Without this information we may be unable to process your application quickly and you could experience significant delays in the progress of your application to study with us. Please explicitly state the full list of modules within your qualification at the time of application.
Access
Pass a Science Access to Higher Education Diploma with 45 credits, including 30 Level 3 credits at Distinction and 15 credits Level 3 credits at Merit from science units.
We welcome applicants with international qualifications. To view other accepted qualifications please refer to our╠ř tariff glossary.

Fees, costs and funding

Student 2023-2024 2024-2025
Home £9,250 £9,250
International £16,300 £18,100
Part time (Home) £770 £770
Full time fees shown are per annum. Part time fees shown are per 10 credits. Please note that fees are reviewed on an annual basis. Fees and the conditions that apply to them shown in the prospectus are correct at the time of going to print. Fees shown on the web are the most up to date but are still subject to change in exceptional circumstances. More information about fees and funding.

Undergraduate scholarships for international students

To reward outstanding achievement the University of Plymouth offers scholarship schemes to help towards funding your studies.

Additional costs

This course is delivered by the Faculty of Science and Engineering and more details of any additional costs associated with the faculty's courses are listed on the following page: Additional fieldwork and equipment costs.

Tuition fees for optional placement years

The fee for all undergraduate students completing any part of their placement year in the UK in 2023/2024 is £1,850.
The fee for all undergraduate students completing their whole placement year outside the UK in 2023/2024 is £1,385.
Learn more about placement year tuition fees

How to apply

All applications for undergraduate courses are made through UCAS (Universities and Colleges Admissions Service).╠ř
UCAS will ask for the information contained in the box at the top of this course page including the UCAS course code and the institution code.╠ř
To apply for this course and for more information about submitting an application including application deadline dates, please visit the .
Support is also available to overseas students applying to the University from our International Office via our how to apply webpage or email admissions@plymouth.ac.uk.

Adrienne, BSc (Hons) Geology student, shares her experience of a course field trip in Italy.

Our suite of courses offer opportunities for overseas fieldwork.╠ř

Discover facilities in the School of Geography, Earth and Environmental Sciences

As student in the School of Geography, Earth and Environmental Sciences you will have access to a range of cutting-edge resources and facilities. ╠ř
These will support your learning in the field and in the laboratory ÔÇô whether in traditional chemistry lab or a high-performance computing room. Many are solely for the use of our students and researchers and you will also have access to LABplus Resource Centre and the Marine Station.
╠ř
Students using a petrographic microscope

QS World University Rankings 2023

In top 15 UK universities for earth and marine sciences, geology and geophysics - QS World University Rankings by subject 2023

Times Higher Education Impact Rankings 2022*

The University of Plymouth has been named among the top 5% of universities globally in 2022 for its contribution to the United NationÔÇÖs Sustainable Development Goals*, in particular, work on marine issues and on climate change. In the School of Geography, Earth and Environmental Sciences, sustainability is at the heart of our research and teaching. From sustainable cities, affordable and clean energy, to climate policy, biodiversity, and natural hazards, our academic staff work with partners locally and overseas to help understand, communicate and solve fundamental and pressing sustainability challenges.
Find out more in our press release╠ř

Where could a career in geology take you?

Geologists are in demand globally. From meeting challenges associated with sustaining energy supplies, to developing low-carbon economies, and understanding, designing and mitigating against changing climates, there are many exciting opportunities available.

Related research

Centre for Research in Earth Sciences (CRES)

Our world-class research keeps staff at the cutting edge of recent scientific developments within the field.
Explore the interdisciplinary research carried out within Earth sciences.
Aerial shot of an active volcano.

Sustainable Earth Institute╠ř

The Sustainable Earth Institute is about promoting a new way of thinking about the future of our world.
We bring researchers together with businesses, community groups and individuals to develop cutting-edge research and innovative approaches that build resilience to global challenges.
We link diverse research areas across the University including science, engineering, arts, humanities, health and business.
Baobab tree in Madagascar

Journey to the Bottom of the Celtic Sea

Research by our Earth Scientists on the Celtic Sea bed is helping develop renewable energy futures in the south west.

People

*These are the latest results from the National Student Survey. Please note that the data published on is updated annually in September.╠ř